Human BAT Possesses Molecular Signatures That Resemble Beige/Brite Cells

نویسندگان

  • Louis Z. Sharp
  • Kosaku Shinoda
  • Haruya Ohno
  • David W. Scheel
  • Emi Tomoda
  • Lauren Ruiz
  • Houchun Hu
  • Larry Wang
  • Zdena Pavlova
  • Vicente Gilsanz
  • Shingo Kajimura
چکیده

Brown adipose tissue (BAT) dissipates chemical energy and generates heat to protect animals from cold and obesity. Rodents possess two types of UCP-1 positive brown adipocytes arising from distinct developmental lineages: "classical" brown adipocytes develop during the prenatal stage whereas "beige" or "brite" cells that reside in white adipose tissue (WAT) develop during the postnatal stage in response to chronic cold or PPARγ agonists. Beige cells' inducible characteristics make them a promising therapeutic target for obesity treatment, however, the relevance of this cell type in humans remains unknown. In the present study, we determined the gene signatures that were unique to classical brown adipocytes and to beige cells induced by a specific PPARγ agonist rosiglitazone in mice. Subsequently we applied the transcriptional data to humans and examined the molecular signatures of human BAT isolated from multiple adipose depots. To our surprise, nearly all the human BAT abundantly expressed beige cell-selective genes, but the expression of classical brown fat-selective genes were nearly undetectable. Interestingly, expression of known brown fat-selective genes such as PRDM16 was strongly correlated with that of the newly identified beige cell-selective genes, but not with that of classical brown fat-selective genes. Furthermore, histological analyses showed that a new beige cell marker, CITED1, was selectively expressed in the UCP1-positive beige cells as well as in human BAT. These data indicate that human BAT may be primary composed of beige/brite cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shades of Brown: A Model for Thermogenic Fat

Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like ce...

متن کامل

miR-125b affects mitochondrial biogenesis and impairs brite adipocyte formation and function

OBJECTIVE In rodents and humans, besides brown adipose tissue (BAT), islands of thermogenic adipocytes, termed "brite" (brown-in-white) or beige adipocytes, emerge within white adipose tissue (WAT) after cold exposure or β3-adrenoceptor stimulation, which may protect from obesity and associated diseases. microRNAs are novel modulators of adipose tissue development and function. The purpose of t...

متن کامل

Let-7i-5p represses brite adipocyte function in mice and humans

In response to cold or β3-adrenoreceptor stimulation brown adipose tissue (BAT) promotes non-shivering thermogenesis, leading to energy dissipation. BAT has long been thought to be absent or scarce in adult humans. The recent discovery of thermogenic brite/beige adipocytes has opened the way to development of novel innovative strategies to combat overweight/obesity and associated diseases. Thus...

متن کامل

Thermogenic brown and beige/brite adipogenesis in humans.

Evidence from rodents established an important role of brown adipose tissue (BAT) in energy expenditure. Moreover, to sustain thermogenesis, BAT has been shown to be a powerful sink for draining and oxidation of glucose and triglycerides from blood. The potential of BAT activity in protection against obesity and metabolic syndrome is recognized. Recently, an unexpected presence and activity of ...

متن کامل

Integrated control of brown adipose tissue.

Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012